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11 A RECURSIVE MAXIMUM LIKELIHOOD

DECODING

The Viterbi algorithm is indeed a very simple and efficient method of imple-

menting the maximum likelihood decoding. However, if we take advantage

of the structural properties in a trellis section, other efficient trellis-based de-

coding algorithms can be devised. Recently, an efficient trellis-based recur-

sire maximum likelihood decoding (RMLD) algorithm for linear block

codes has been proposed [37]. This algorithm is more efficient than the con-

ventional Viterbi algorithm in both computation and hardware requirements.

Most importantly, the implementation of this algorithm does not require the

construction of the entire code trellis, only some special one-section trellises

of relatively small state and branch complexities are needed for constructing

path (or branch) metric tables recursively. At the end, there is only one table

which contains only the most likely codeword and its metric for a given received

sequence r = (rl,r_,... ,rN). This algorithm basically uses the divide and

conquer strategy. Furthermore, it allows parallel/plpeline processing of

received sequences to speed up decoding.
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11.1 BASIC CONCEPTS

Consider a binary (N, K) linearblockcode C. Suppose a codeword istransmit-

ted and r = (rt,r2,...,r_v)isthe receivedvectoratthe output of the matched

filterof the receiver.

Let T be the minimal trellisdiagram forC. Consider the trellissectionfrom

time-x to time-y. As shown in Section6.2,a composite branch between two

adjacent statesin this trellissectionisa coset in trp.,y(C)/C.,_, and a com-

positebranch may appear many times as shown in (6.13).Using thisfact,we

can reduce the decoding complexity by justprocessingthe distinctcomposite

branches ineach trellissection.To achievethis,we form a table forthe met-

ricsofcomposite branches, which for each cosetD inp,,:,(C)/C=,y,storesthe

largestmetric D, denoted re(D), and the labelfor the branch with the largest

metric,denoted l(D). This tableiscalledthe composite branch metric ta-

ble, denoted CBT,,y, for the trellissectionbetween time-x and time-y.Since

the set ofcosetspo,N(C)/C_[ N = C/C consistsof C only,the table CBT0.N

containsonly the codeword in C that has the largestmetric.This isthe most

likelycodeword. The RMLD algorithm issimply an algorithm to constructa

composite branch metric table recursively from tablesfor trellissectionsof

shorterlengthsto reduce computational complexity. When the table CBTo.N

isconstructed,the decoding iscompleted and CBT0.t; contains the decoded

codeword.

A straightforwardmethod to constructthe tableCBTz.y isto compute the

metrics of allthe vectorsin the punctured code pz,,(C),and then find the

vector with the largestmetric for every coset in p=,y(C)/Ct_[,#by comparing

the metricsof vectorsin the coset.This method isefficientonly when y - x

issmall and should only be used at the bottom (or the beginning) of the

recursiveconstructionprocedure. When y - x is!arge,CBTz,,j isconstructed

from CBT_.z and CBT,,y fora properlychosen ir_tegerz with z < z < y.

Therefore,the key part of the RMLD algorithm isto constructthe metric

tableCBT=._ from tablesCBT,,z and CBTz,y. Fir ;twe must show that thiscan

be done. For two adjacent states, a_ and a_, with r, 6 _]=(C) and a,j 6 _,#(C),

let

= (11.1)
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Figure 11.1. Connection between two states.

denote the subset of states in I]_(C) through which the paths in L(a_,au)

connect a_ to ay as shown in Figure 11.1. Then

n(a_:'au) - U n(cr_,a_ ') ) o L(_r_i),au). (11.2)

It follows from (11.2) and the definitions of metric and label of a coset (or a

composite branch) that we have

m(L(az,ay)) a max {m(L(a,,a(_'))) + m(L(a_i),au))} (11.3)

and

l(L(_%,au)) = l(L(a_,at.i*'")))o l(L(a_i''),av)), (11.4)

where im_x is the index for which the sum in (11.3) takes its maximum.
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Note that the metrics, m(L(o'f,a'(.0)1and m(L(a(,0,_.)), and labels,

l(L(a=,o._O))and/(L(a_0,ay)), are storedin the composite branch metric ta-

bles CBTf,v and CBT_,y. The stateset Ez(az,a_) can be determined from

the code trellis.Therefore,(11.31and (11.41show that the composite branch

metric tableCBT=,y can be constructedfrom CBT,,z and CBTz,y.

Based on the structuralpropertiesof a sectionalizedtrellis,we can readily

show that

= ir.,(_r_,_,_)I= 2k(c'.,_-k(c'.'_-k(c'., _. (11.5)

This says that if we compute the metric m(L(cr,, a_)) from (11.3) using tables,

CBT,,, and CBT,,y, we need to perform IE,(_,,_)I additions and

IE=(a=, a_)[- 1 comparisons. However, if we compute the metric m(L(a=, o'_))

directlyfrom the parallelbranches in L(a=,a_), we need to compute IC::_l =

2_(c_.,} branch metricsand perform 2t{¢_.,)- 1 ccmparisons.For largey - z,

ICt_l ismuch largerthan IEz(o'=,o'y)[and hence consti-uctingthe metric ta-

ble CBT_,,j from tables,CBT_,z and CBT_,y, requiresmuch lessadditionsand

comparisons than the directconstructionofCBT=,:_ from vectorsinp_,_/(C)and

cosetsin p_.,j(C)/Ct_,j.Therefore,recursiveconstructionofcomposite branch

metrictablesfortrellissectionsoflongerlengthsfrom tablesfortrellissections

ofshorterlengthsreducesdecoding computational complexity.

11.2 THE GENERAL ALGORITHM

Now we describethe generalframework ofthe RMLD algorithmforconstruct-

ing the composite branch metric table CBTz,,j :or decoding a receivedse-

quence r. We denote thisalgorithm with RMLD(z,y). This algorithm uses

two procedures,denoted MakeCBT(z,y) and CcmbCBT(z, y;z),which are

definedas follows:

• MakeCBT(z, y): construct the table CBTz,y di'ectly as described later.

• CombCBT(z,y; z): Given tables CBT_,_ and £ BT_,,j as inputs, where z <

z < y, combine these tables to form CBT_,y as shown in (11.3) and (11.4).

The procedure CombCBT(_', y, z) can be expresse J as

CombCBT(RMLD(x, z),RM[ D(z,y))
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I CombCBT(O, N; zl ) I

ICombCBT(0,.,;.,)1100mbOBT(.1,N;.,)I

I CombCBT(0, z:; z,) I IcornbCBT(z'l, N; z_) I

ico.,bcsT(..,.,;.,)j

Figure 11.2. Illustration of the recursion process of the RMLD algorithm.

to show its recursive nature.

[Algorithm RMLD(x, y)]

Construct CBTz,y using the least complex of the following two options:

(l) Execute MakeCBT(z,y), or

(2) Execute CombCBT(RMLD(z, z),RMLD(z, y)), where z with z < z < y

is selected to minimize computational complexity.

Decoding is accomplished by executing RMLD(0, N). The recursion process

is depicted in Figure 11.2. We see that the RMLD algorithm allows paral-

lel/pipeline processing of received words. This speeds up the decoding process.

The MakeCBT(x, y) procedure is efficient only when y-z is small and should

only be used at the bottom (or the beginning) of the recursive construction

procedure. When y-z is large, CBTz,y is constructed from CBT_,z and CBT_,y

for a properly chosen z with z < z < y. At the bottom of the recursion process,

y - x is small and the computation done by the MakeCBT procedure during

the entire decoding process is also small. Therefore, the major computation is
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carried out by the CombCBT procedure. Hence, the CombCBT procedure is

the major procedure in the RMLD algorithm and should be devised to reduce

either the total number of computations for software implementation or the

circuit requirement and chip size for IC implementation.

In a soft-decision decoding algorithm, addition and comparison operations

for metrics are considered as the basic operations. An addition operation and

a comparison operation are in general assumed to have equal weight (or cost).

Let CM(Z, y) and ¢c(z, y; z) denote the number of basic operations required

to execute the procedure MakeCBT(x, y) and the procedure CombCBT(x, y; z),

respectively. The values of CM(x,y) and ¢¢(x,y;z) depend on the imple-

mentation of the RMLD algorithm. Assume that the formulas for ¢M(x,y}

and ¢c(x, y; z) are given. To minimize the overall decoding complexity of the

RMLD algorithm, sectionalization of a trellis (choices of z) must be done prop-

erly. A sectionalization which gives the smallest overall decoding complexity

for given CM(X,y) and _bc(x,y; z) is called the optimum sectionalization

for the code.

Let Cmi,,(x,y) denote the smallest number of operations required to con-

struct the table CBT_,,_. Then it follows from the algorithm RMLD(x, y) given

above that

rain _bM(x,y), min {¢n.m'm(x,y;z ,
z<z<y

ifz+l=y,

otherwise,

(11.0)
where

(11.T)

The total number of operations required to decode a received word is given by

g).
By using (11.6) and (11.7) together with formulas for CM (x, y) and Ce(z, Y; z),

we can compute Cmi=(x,y) for every (x,y) with 0 <_ x < y < Y efficiently in

the following way: The values of _min(x, x + 1) for 0 < x < N are computed

using the given formula for CM (x, y). For an integer i with 0 < x < x + i < N,

_bmin(x, x + i) can be computed from Cmlu(x', y') with y' - x' < i and the given

formulas for CM(X,y) and ¢c(x,y; z). By keeping track of the values of z se-

lected in the above procedure, it is easy to find an optimum sectionalization.
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If em (x, y) and ¢c(z, y; z) are independent of the received sequence r for any

0 < z < y < N and z < z < y, then the optimum sectionalization can be fixed.

11.3 DIRECT METHODS FOR CONSTRUCTING COMPOSITE

BRANCH METRIC TABLES

For two integersz and y such that 0 < z < y < N, a straightforwardway to

constructthe composite branch metric tableCBTz,v directlyisto compute the

metricsofallthe vectorsinthe punctured codepz,_(C) independently,and then

C trfindthe vector(branch) with the largestmetric forevery cosetinPz,y( )/C=,v

by comparing the metrics of vectorsin the coset.Each survivingvectorand

itsmetric are stored inthe tableCBTz,v. Let MakeCBT-I(z,y) denote this

procedure.

The number ofaddition-equivalentoperationsrequiredtoconstructthe table

CBT=,v by executing MakeCBT-l(z, y), denoted _)(z,y), isgiven as follows:

V)_l(x,y) = (y - x - 1)2 _(v''"lC_) + 2_(v="(c))-k(c"_)(2 k{C'_) - 1). (11.8)

The first term is the number of additions to compute all the metrics for the

vectors in p,,,j(C), and the second term is the number of comparisons for finding

the vectors with the largest metrics by comparing the metrics of vectors in each

coset in trp_.,/C)/Cz,y.

A more efficient method for constructing the table CBTz,,_ is to compute

the metrics of the 2_-" branch labels following the order of the Gray code as

proposed in [60, 102]. Let MakeCBT-G (z, y) denote this procedure, where

G stands for Gray code. Assume that the bit metric satisfies the following

condition: M(r,0) = -M(r, 1), where r is a received symbol. This condition

holds for the AWGN channel with BPSK transtaission and M(r, 1) & r. We

also assume that the all-one vector of length y - c, denoted lv-z, is in p_,v(C)

for any z and y with 0_< z < y <_ N. In thi: case, the metrics of 2v-z-1

labels are computed first in the order of the Gray code, and then the remaining

tr formetrics are computed by negating the first 2v-z- 1 metrics. If ly_, E C_, v,

tr the complementary vector is in the same coset.any vector in a coset of Cz,v,

In this case, we can simply discard the branches with negative metrics [60, 102]

for finding the largest metric in each coset.
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Let ¢_)(z,y) denote the values of Cm(z,Y) using the MakeCBT-G(z,y).

Assume that the negation is costless. Then,

2 v-ffi-t + y - z - 2 + 2_(P'.,(c))-_(c'.,)(2 ttc'..}-t - 1),

tr
if lu_= E C,.u,

v) = 2y-`-x + v - z - 2 + 2kCP'.'CCI -kCC'" (2 -- 1),
otherwise.

(11.9)

For small Y - x, the dimension of pz,v(C) is close to y - z. The computational

complexities of both MakeCBT-I and MakeCBT-G procedures are small for

small Y - z. The RMLD algorithm with the MakeCBT-G procedure requires

slightly less computational complexity than that with the MakeCBT-I proce-

dure; however, the MakeCBT-I procedure is simpler for IC implementation.

Using the MakeCBT-G procedure, the metrics of the first 2 u-=-l labels in

pz,v(C) must be computed serially, however with the MakeCBT-I procedure,

the metrics for all the labels in p,,v(C) can be computed independently in

parallel.

11.4 THE COMBCBT PROCEDURE

The CombCBT(x,p; z) procedure simply performs the computation of (11.3)

and finds the label of (11.4). It is important to note that in the construction

of the metric table CBT=. v, we do not need to compute the metric

m(a,,_v) --* m(L(a=,_ru) )

for every adjacent state pair (a,,ay). We only need to compute m(a_,cry) for

those adjacent state pairs for which the paths between each state pair form

ctra distinct coset in p_,_(C)/ _,v. Therefore, we only compute the metrics for

2_Cp,._(c))-k(v,.,) distinct adjacent state pairs between time-z and time-y. This

is the key to reduce computational complexity.

In principle we can construct the metric table CBT_,_ using the section of

the code trellis T from time-z to time-y as follows:

ctr(i) For each coset D • p_,_(C)/ =._, identify a state pair (az,ay) such that

L(a_,av) = D;

(ii) Determine the state set E,(az,a,_); and
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(iii) Compute the metric m(af,_rv) and the label l(_r=,a_) from (11.3) and

(11.4), respectively.

However for long codes, it is a big effort to construct the large trellis section from

time-z to time-y and execute the above steps (i) to (iii). The total number of

composite branches in the trellis section between time-z and time-y can be very

large and the number of distinct composite branches is only a small fraction.

Examining this trellis section can be very time cc.nsuming and effort wasting.

Consequently, implementation will be complex and costly.

To overcome the complexity problem and facilitate the computation of (11.3),

we construct a much simpler special two-section trellis for the punctured code

p_._(C) with section boundary locations in {z, z, !,} and multiple "final" states

p=,_(C)/Cz,y. This special two-section trellisat time-y, one for each coset in tr

contains only the needed information for constructing the metric table CBT=,v

Errfrom CBT=,, and CBTz,y (no redundancy). For a coset D v • p,,_(C)/ =,_,

define

C trSz(Dv) _= {Dz 6 p,.z(C)/ _._: D_ C_ p_._(D,,)}, (ll.1O)

where p_...(D,,) is the truncation of the coset D u fr-m time-x to time-z. For each

D_ 6 S=(D,j), there is exactly one coset in pz.,j(C)/Ct,'_j, denoted adj(Dz, Ors ),

such that D, o adj(Dz,D_) C_ D_ (see Figure 11.: ). Then,

Dy = U D, oadj(D.,D,_). (II.II)

D.£S,(D.)

From (11.11) we see that the metric of D_ c_.n be computed from metrics

"C\lC tr ""' C tr (or from tables CBT_of cosets in p_,_[ )/ _.z and cosets in p_.y_)/ z.y

and CBTz.,j) once the set S_(D,j) and adj(D_,/:,j) for each D_ 6 S_(Du) are

identified. The special two-section trellis to be ccnstructed is simply to display

the relationship given by (11.11) and identify the set S_(Dv) for each coset

tr

D,j E p=.,j(C)/C,.:r

Let _z and F. v denote the state spaces of the special two-section trellis for

pz,_(C) at time-z and time-y, respectively. To ac fieve the purpose as described

above, the special two-section trellis for pz,y(C) nust have the following struc-

tural properties:

(1) There is an initial state, denoted a=,0 at "ime-x.

w
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(2) There is a one-to-one correspondence between the states in the stxte

'C_'C"space E, and the cosets in P=,=_ )1 =,_" Let D, denote a coset in

p,,,(C)/Ct-_,and a(D,) denote itscorresponding stateat time-z. Then

the composite branch labelbetween az,oand c(D=) "mL(az.o,c(Dz)) =

S,.

(3) There is a one-to-one correspondence between the states in the state

space _y and the cosets,, tC_/C" Let Dy denote a coset in p,.u(C)[l'z,yk l/ z,y"

ctr,j and a(D,,) denote its corresponding state at time-y. For any state

a(D,,) 6 Ey, L(a(D,),a(D,j)) = adj(D,,D_) if D, • S,(D,j). Other-

wise.L(a(D.).a(D,)) = 0.

From the structural properties of the above special two-section trellis, we see

that: (1) For every state a(D,) • E,, its (state) metric re(D,) is given in the

table CBT,,,; and (2) For each composite branch between a state a(D,) at

time-z and an adjacent state a(D,j) at time-y, its composite branch metric,

m(a(Dz),c(D,j)), is given in the table CBTz.:j.

It follows from (11.11) and the structural properties of the above special

two-section trellis for p_,:j(C) that for each coset D v • p_._(C)/Ct, r_, the metric

re(D,.,) is given by

m(Du) = max {re(D,) + m(a(D,),a(Du))}, (11.12)
D, ES,(Dy]

where the set ofstatescorrespond to S, (Du) and the statepairs Ca(D,),a(D_))

can be easilyidentifiedfrom the specialtwo-sectiontrellis.Eq.(11.12)issimply

equivalentto (I1.37.Therefore,CombCBT(z, y;z)willbe designed tocompute

the metricsforthe tableCBTz,zj based on (11.12)usingthe specialtwo-section

trellis.In general,thisspecialtrellisismuch simpler than the sectionof the

entirecode trellisT from time-z to time-y except forthe caseswhere x = 0 or

y = N, and ismuch easierto construct. As a result,the constructionof the

metric tableCBT_,,j ismuch simpler.

The construction of the above special two-section trellis for Pz,_ (C) is done

as follows: Choose a basis {vx,v2,... ,vk(t,..,(c))} of P,,u(C) such that the first

k(Ct-[u) = k(C,.u ) vectors form a basis of Ct[u. Define

n,,u _ y - x + k(p,,u(C)) - k(C,,u ). (11.13)
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Let G(x,y) be the following k(pz,_(C)) x n=,v matrix:

205

=

Ul

Vk(C,,.)

l_k(C,,_)+l

vk(p...(c))

where 0 denotes the k(C=,,) x (k(p=,,(C)) - k(C.,)) all-zero matrix, and I

denotestheidentitymatrixof dimension(k(p,.,(C))- k(C,.,)). LetC(=,
be the binary linear code of length nz,_ generated by G(z, y). Construct a 3-

section trellis diagram T({z, z, y, x + nz,y}) for C(z, y) with section boundaries

at times x, z, y and x + n_.:j as shown in Figure 11.3. Then the first two

sections of T({x, z, y, x + nz,:j}) give the desired special two-section trellis for

computing (11.12).

In fact from (11.12) and the properties of the special two-section trellis for

pz._(C), we only need the second section of T({x z,y,x + n,,y}) to construct

the table CBT_.,j. For convenience, we denote tl.is special one-section trellis

with T,(z,y). Table CBTz,, gives the state metrics of T,(z,y) at time-z and

Table CBT,.y gives the composite branch metrics of Tz(z,y) between time-z

and time-y. Therefore, the implementation of the RMLD algorithm does not

require the construction of the code trellis T for the entire code C, it only

requires the construction of the special one-sectioa trellises, one for each recur-

sion step. Each of these special one-section trellises has the minimum (state

and branch) complexity for constructing a compos te branch metric table using

the CombCBT procedure. This reduces decoding complexity considerably.

Example 11.1 Consider the RM code C = RM_ 4 given in Example 6.3. Let

z = 4, y = 12, and z = 8. Then, pz,y(C) = RI/12,3, Ct-_u = RM1,3, C_t_z =
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initial

O'z,O

2k(p,.,(c))-_(c,.,)
states

a coset of C:[u in pz.u(C)

__ a coset of Ct-'.= in p_:,=(C)

Figure 11.3. Structure of the trellis diagram T({z, z, y, z + n=,y}).

Ct'y = RMo,2, and n,,y = 11. C(z,y) is the (11,9) code generated by

I I I i I I I I 0 0 0

0 1 0 1 0 1 0 1 0 0 0

0 0 1 1 0 0 1 1 0 0 0

0 0 0 0 1 1 1 1 0 0 0
G(z, !/) =

0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 1 0 1 0 1 0

0 O 0 0 O 0 1 1 O 0 1

It can be put in trellis oriented form by simple row operations. The one-section

minimal trellis diagram, 7"4(8, 12), consists of two 4-state parallel components.

One of the components is depicted in Figure 11.4. The other can be obtained
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time z=8 time I/=12

L l
aCm(1)) PI aCD_l))

_(Dt_) _(D__)

Pl =" {0000, 1111}, P2 =" {001., 1100}

P3 =" {0101, I010},P4 =" {011,),I001}

Figure 11.4. A parallelcomponent of T4 (8,12) forthe RM2,4 code.

by adding (0,0,0, 1) to each branch label.

From (11.12), we see that the computation ¢f the composite branch met-

ric rn(D_) depends on the size of the set Sz(i_). Since for a coset Dy e



208 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

tr p.,.(c)/c.,., itpz,v(C)/C=,_, the truncation pz,z(D_) is a union of cosets in t,

follows from property (3) of the special two-section trellis that for every state

cr(Dv) e E v, the number of composite branches merging into the state a(Dv)

is

ctrID,,I =,,,
IS.(D,,)I = ID=I" - O' • C"Z,Z Z,y

= 2k(c-.,,) -k(c-,,)-_(c',,), (11.14)

which is exactly the same as (11.5). From (11.14), we can readily determine

the number of computation operations required to compute m(Dv).

Next we need to devise efficient methods to solve (11.12) using the one-

section trellis T=(z,y) so that either the computational complexity of the

CombCBT procedure is reduced or the circuit requirement and chip size of

IC implementation of the CombCBT procedure are reduced. Two methods

for solving (11.12) will be presented in the next two sections and they re-

sult in two specific CombCBT procedures, named the CombCBT-V and the

CombCBT-U procedures.

11.5 COMBCBT-V(X, Y; Z) PROCEDURE

A straightforward procedure to solve (11.12) based on the one-section trel-

lis Tz(z,y) is to apply the conventional add-compare-select (ACS) procedure

that is used in the conventional Viterbi algorithm. For each coset Dv in

p=,v(C)/Ct=_v, the metric sum, rn(D=) + m(a(D=), a(Dv) ), is computed for ev-

ery state er(D=) with Dz E Sz(Dv), and rn(Dv) is found by comparing all

the computed metric sums. This procedure is called the CombCBT-V(x, y; z)

procedure, where V stands for Viterbi algorithm.

Since the Viterbi algorithm is applied to a one-section trellis diagram to

construct a composite branch metric table from two smaller tables, the IC

implementation of the CombCBT-V procedure is quite simple and straightfor-

ward.

Let ¢(cV)(=, y; z) denote the value of thc(z,y; z) for the CombCBT-V(z, y; z)

procedure. Note that the number of states at time-y in T=(z,y) is

2_(p,.,(c))-k(c,.u ), and for each state a(Dv) at time-y, the number of states

or(D=) at time-z in T=(z,y) which are adjacent to a(Dv) is given by (11.14).
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Let

p,(c.,,,) = - - k(c,.,). (11.15)

Then, the total number of additions and that of comparisons executed by the

CombCBT-V(z, y; z) procedure are

2_(p'.,(c))-k(c',,)+p'(c'.,) and 21'(P'.'(c)_-k(c'")(2 p'(c''_) - 1),

respectively. Consequently, the computational complexity of the CombCBT-V(z,

y; z) procedure is given by

_2(cV)(=,y;z) -- 2_'(P'.,(c))-k(c'")(2 p'(c''')+1 - 1). (11.16)

11.6 RMLD-(I,V) AND RMLD-(G,V) ALGORITHMS

Combining the CombCBT-V procedure with either the MakeCBT-I proce-

dure or the MakeCBT-G procedure, we obtain two specific RMLD algorithms,

denoted RMLD-(I,V) and RMLD-(G,V). From (11.6), (11.7), (11.8) and

(11.16), we can compute the total number of addition-equivalent operations

required by the RMLD-(I,V) algorithm for decoding a received word. The com-

putational complexity of the RMLD-(G,V) aid< rithm can be computed from

(11.6), (11.7), (11.9) and (11.16).

For either the RMLD-(I,V) algorithm or the RMLD-(G,V) algorithm, we

need to know for what value of y - x that the CombCBT-V procedure should

be executed to construct the table CBT,,y. This is answered by the following

two theorems. We simply state the theorems here without the proofs which

can be found in [111].

Theorem 11.1 Consider a binary linear code C of length N such that the

minimum Hamming distances of C and its dual code are both greater than

one.

(i) If y- z > 2, then for any z with z < z < 9, the CombCBT-V(z, y; z)

procedure requires less computation to form the metric table CBT,,y

than the MakeCBT-I(z,y) procedure. It y - z = 2, the complexities of

CombCBT-V(x,y; z + 1) and that of M;.keCBT-I(z,y) are the same.



210

(ii)

TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

Ify--x > 2,k(p,,:(C))= y--x and Ct_ll: {Or_m, (I,*,...,.,I)},where

0__, denotesthe all-zerovectoroflengthy-x and (I,%...,., I)denotes

a vector of length y - x such that the firstand the lastcomponents

are I, then the right-hand side of (11.6)takes itsminimum for both

z = L(x ory)/2J and z = r(z °ru)/21. AA

Theorem 11.1 simply says that for y - z > 2, procedure CombCBT-V(x,y; z)

should be used to construct the metric table CBT,,y in the RMLD-(I,V) algo-

rithm.

Theorem 11.2 Consider a binary linear code 6' of length N such that the

minimum Hamming distance of C and its dual code are both greater than one.

For the RMLD-(G,V) algorithm,

(i) Ifk(p,,,(C)) = y - z and Ct,_y= {0} or {O,_,,(1,. .....*,I)},then

the MakeCBT-G(x,v) procedure requiresless computation than the

CBT(x,y;z) procedure forany z with z < z <_ y to form the metric

tableCBTz.v for y - z > 2. When y - z = 2, they are the same.

(ii) Ifthe conditionsof (i)do not hold,then the CombCBT-V(z, y;z) pro-

cedure with some z is more efficientthan the MakeCBT-G(z,y) for

constructingthe metric table CBTz.v for y - x > 2. Moreover, if

k(pz,y(C)) < y - x and Ctz[v = {0} or {0_-,, (i,*,...,*, I)}, then the

right-hand side of (11.6) takes its minimum for both z = L(z + y)/2J

and = +

Since the Viterbi algorithm is applied to a one-section trellis diagram to

construct a composite branch metric table from two smaller tables, the IC im-

plementations of both the RMLD-(I,V) and RMLD-(G,V) algorithms are quite

simple and straightforward. For high speed decoders, the MakeCBT-I proce-

dure is more suitable than the MakeCBT-G procedure, since branch metrics

can be computed in parallel. As shown in Theorem 11.1, in the optimum sec-

tionalization, the value of !/- z for the MakeCBT-I procedure to be executed

can be kept equal to 2, but this is not necessarily the case for the MakeCBT-G

procedure (see Theorem 11.2). Hence, IC implementation of the MakeCBT-I

procedure is easier. Furthermore, with the MakeCBT-G procedure, the metrics

must be computed seriully.
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,1.7 COMBCBT-U(X, Y; Z) PROCEDURE

This procedure is based on the decomposition of the one-section trellis T.(z, y)

into simple uniform subtrellise* as described in Section 6.4. The one-section

trellis T,(z, !l) may consist of parallel isomorphic components. These parallel

components can be partitioned into groups of the same size in such a way that:

(1) two parallel components in the same group are identical up to path labeling;

and (2) two parallel components in two different groups do not have any path

label in common [44]. Each group consists of 2x identical parallel components,

where A can be computed from (6.36) with C(z, y) as the code.

Furthermore, each parallel component of T,(z,y) can be decomposed into

subtrellises with simple uniform structures as shown in Figure 11.5 by applying

Theorem 3 of [44] (also see Section 6.3) to the code C(z, y) that was used for

constructing the one-section trellis T,(z, y). Consider a parallel component A.

The state space, at the two ends of the parallel component can be partitioned

into blocks of the same size 2v, called left U-blocks and right U-blocks,

respectively, where v can be computed from (6.41) with C replaced by C(z, y).

A pair of a left U-block and a right U-block is called a U-block pair, and

each U-block pair (B,, B:/) has the following uniform structure, denoted U:
I

For any two states a v and a,# in B:l,

{L(a,,a,,) : a, 6 B,} = {L(a,,c_) : a, e B,}. (11.17)

The above property simply says that for a U-[lock pair (Bz,Bv), the set of

composite branches from the states in the left ll-block B, to any state in the

right U-block B u is the same. This property (an be used in solving (11.12)

to reduce the computational complexity. The label set of composite branches

defined by (11.17) is called the composite branch label set of the U-block

pair (Bz,Bv). Two different U-block pairs have mutually disjoint composite

branch label sets.

The CombCBT-U(z, y; z) procedure is devis_ d based on the uniform struc-

ture of a U-block pair. In contrast to the CorlbCBT-V(z,y; z) which solves

,C_,C t,(11.12) independently for every state a(D v" with Dy 6 P,,yt )/ ,,.,,,

CombCBT-U(x,y; z) solves (11.12) simultaneot,sly for each U-block pair (B,,

B_) of a parallel component of T,(z,y) by taking into account of the uniform
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A U-block pair and

branches between them
/

A left ] A right

U-block 1 U-block

_v states

2 _ states

2v states

2v states

2v states

Time z Y

Figure 11.5. The left U-blocks and right U-blocks of a parallel component in Tz(z,y).



A RECURSIVE MAXIMUM LIKELIHOOD DECODING 213

property U given by (11.17). For a parallel component A of Tz(z, y), let LU(A)

denote the set of left U-blocks in A. Based on (11.17), (11.12) can be put in

the following form: For a state a(Dy) in a right U-block By,

(D) _771B, ,j ----
max l{m(D_) +m(a(Dzi,a(Dy))}, for B_ e LU(A),D,E{D,:a(D,)EB,

(11.181

m(Dy) = max roB. (Dy). (11.19)
B,eLU(^)

Equations (11.18) and (11.19) show that (11.12) can be solved simultaneously

for each U-block pair. This allows parallel processing to speed up the compu-

tation. In fact the computations of (11.18) and (11.19) can be carried out for

all the parallel components of T,(z, y) in parallel

For easy understanding, an example is used tc explain how to solve (11.18)

for each U-block pair (B,, By).

Example 11.2 Again consider the RM code C = RM2.4. As shown in Ex-

ample 11.1, the one-section trellis diagram T_(e,y) with x = 4, y = 12 and

z = 8 consists of two four-state parallel components. From (6.36) and (6.41),

we find that A = 0 and u -- 2. Therefore, the two parallel components are not

identical, and each consists of only one left U-blcck and one right U-block. As

shown in Figure 11.4, the four end states of one oarallel component at time-8,

denoted or(D(1)), a(D(2)), o'(D(3)), a(D(4)), form a single left U-block, and the

4 end states at time-12, denoted a(D(yl)), a(D_Z)), a(D(_)), a(D(4)), form a

single right U-block. There are four different composite branch labels between

them, denoted

P1 A {0000, 1111}, P2 a__{0,)11, 1100},

P3 {0101,1010}, P, {010,1001}.

The set of the composite branch labels merging i ato any state cr(D (y)) at time-

12 is
From (11.18) and (11.19), the largest metric, denoted m(D(y y)), for the coset

D (j) with 1 < j <_ 4 is given by

m(D (j)) = max {m(D_ ')) + m(Pb(,j))}, (11.20)
1_<_<4
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where b(i,j) is the unique integer such that L(a(D(.O),a(D(vD)) = Pb(ij).

To compute the metrics rn(D (D) for 1 _< j _< 4, form the following set of

metric sums:

MA{m(D(. 0)+m(Pb): 1<i<4,1<b<4}.

Each sum in M is associated with a path in the trellis of Figure 11.4. Clearly

the largest sum in M corresponds to the survivor path for the associated state

a(D(v q)) at time-y, i.e., m(D(u q)) is equal to the largest sum in M. Thus this

value for the coset D_ q) is entered in Table CBT=,,j. This can be proceeded by

examining the second, third, ... largest sum in M. If the j-th largest sum Mj
corresponds to state a(D(q')), and CBT=,v contains no entry for the coset O (q),

then Mj is entered in CBT=,y. This process continues until CBT=,v contains

entries for each D(j }.

Similarly, the metrics of cosets that correspond to the four states at time-

12 in the other parallel component in the one-section trellis T=(z,y) can be

computed. This completes the construction of table CBT=.,j.

We can find the j-th largest sum of M more efficiently by pre-sorting

{m(D_')): 1<i<4) and {m(Pb): 1<b<4).

AA

In general, for a U-block pair (B=,Bv) with B= = {a(D_X)),cr(D_ 2)) .... ,

tr(D(z2"))}, B v = {a(D(yll),(r(D_2)),... ,a(D(y2"))}, and the composite branch

label set of (B=, B,j), {Px, P2 .... , P2_}, (11.18)is solved in the following way:

(S1) Sort re(D(=1)), m(D_2)), ..., rn(D (-2°)) in the decreasing order.

($2) Sort m(P1), re(P2),...,re(P2-) in the decreasingorder.

($3) Form M A {re(D(. '))+m(Pb) : 1 <_ i <_ 2",1 <_ b < 2_}. Determine

mB.(D(v j}) with 1 < j < 2v as described in Example 11.2 by using the

following partial ordering on M:

m(D_ O) + m(P_) > rn(D_ ¢)) + m(Pv),

if re(D(, ')) > re(D(, i')) and m(Pb) > m(Pb, ).
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Clearly the above procedure for a U-block pair can be executed for all the

U-block pairs in all the distinct parallel components in the one-section trellis

Tz( z, y) simultaneously.

Note that the CombCBT-U(z, y; z) procedure is identical to the CombCBT-

V(x, y; z) procedure only for the case of v = 0 (the trivial case in which each

left U-block and right U-block consist of a single state).

(u)(z, ,zLet _bc , y" ) denote the number of addition-equivalent operations of

CombCBT-U(x,y; z). The computational complexity for solving (11.18) de-

(u) x zpends on the received sequence. In the following, an upper bound on ¢c ( , Y; )

for the worst case is given, which is independent of the received sequence. With-

out derivation, the bound is given below [37]:

_b(u)(z,y; z) < (2 k(p*,'(c))-_(c',')-v + 2k'P*"CC))-_(C'")-_)T/(2 v)

) - 1) (11.21)+2k(P*"(C))-k(C'")((1 -I- 2_,

where

v, for _, = 0, 1,r}(2_) = 2(_- 1)(2 _ - 1)- 1, )therwise.
(11.22)

Let _(cu) (x, y; z) denote the upper bound given by .he right-hand side of (11.21).

It can be shown that [37]

) < (11.:3)

The inequality of (11.23) holds for u _> 2. As u becomes large, the ratio

decreases rapidly. This says that the CombCBT-U procedure is more efficient

than the CombCBT-V procedure computation-w se.

11.8 RMLD-(G,U) ALGORITHM

The CombCBT-U procedure can be combined with either the MakeCBT-I pro-

cedure or the MakeCBT-G procedure to form spe,:ific RMLD algorithms. Since

the MakeCBT-G procedure requires less compu:ational complexity than the

MakeCBT-I procedure. The MakeCBT-G proc,..dure and CombCBT-U pro-

cedure are combined to form an RMLD algorit _m, called the RMLD-(G,U)

algorithm.
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Table 11.1. Number, of additlon-equivalent operations with various maximum likelihood

decoding algorithms for some RM and extended BCH codes of lenKth 64.

Code, (Basis)

}RM2.6 (64, 22)

64-section

425,209

RMLD-(I,V)

78,209

RMLD-(G,V)

77,896

RMLD-(G,U)

upper bound
(a,u)
rain

66,824

Lafourcacle

& Vardy

[60]

101,78E

RMm,¢(64, 42) 773,881 326,0171 323,759 210,671 538,799

RM4,e(64,57) 7,529 5,281 4, 99(J 4,087 6,50?

[E,BCH (64, 10), (C) 20,073 3,201 3,108 3,108 4,074
EBCH(64,16), (B) 764,153 120,193 119,880 96,840 148, 56E

EBCH(64,18), (B) 2,865,401 468,040 468,04C 372,808 509,12C

EBCH(64,24), (B) _ 1,327,353 271,745 271,432' 171,823 316,60_

EBCH(,64,30), (C) 35,028,985 16,091,009 16,056,668 9,408,567 16,598,063

EBCH(64,36), (C) 18,710,521 9,995,617 9,961,580 7,684,276 12,829,263

.EBCH(64,39), (C) 38,436,857 24,741,161 24,707,149 19,841,161 30,982,73]

EBCH(64,45), (C) 1,082,105 893,489 891,695 665,713 891,81 c.

EBCH(64,51), (A) 418,553 312,721 312,382 257,300 393, 52_

From (II.6), (ii.7), (11.9) and (11.21), we can compute an upper bound,

denoted ,/,(G,U),rmin , on the worst-case computational complexity of the RMLD-

(G,U) algorithm for decoding a received word.

11.9 COMPARISONS

Among the three specific RMLD algorithms, RMLD-(I,V), RMLD-(G,V) and

RMLD-(G,U), the RMLD-(G,U) algorithm is the most efficient one computation-

wise, while the RMLD-(I,V) algorithm is the simplest for IC implementation.

In the following, the three specific RMLD algorithms are applied to some well

known codes of length 64 to show their effectiveness in terms of computational

complexity.

Let EBCH(64, k) denote the extended code obtained from the binary prim-

itive (63, k) BCH code by adding an overall parity bit. The computational

complexities of decoding the RM_,a codes with 2 < r < 4 and the permuted

EBCH(64, k) codes with 10 < k < 51 are computed based on certain symbol
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position permutations and given in Table 11.1. Hereafter, RM,,m is denoted

RM-,_( 2_, Z_=o(7)) to show the number of information bits explicitly.

To reduce the state complexities of the trellis diagrams for EBCH(64, k)

codes, the order of symbol positions must be permuted. For the RM codes, the

natural symbol ordering is optimal for the state complexity [45]. For the EBCH

codes, consider the following permutations 7r [46]_ Let a be a primitive element

of GF(26) and {]_,,... ,_6} a basis of GF(2') over GF(2). For a positive integer
8

i less than 26, let a _-_ be expressed as a _-_ = _i=_ b_j]_j, with b_j E GF(2).

For i = 0, let boj _- 0 for 1 _< j _< 6. Then _r is the following permutation

on {1,2,... ,2s}, a'(i) _ 1 + _=1 bi-lJ 2'-_, for 1 < i < 2s. Consider the

following three bases for codes of length 64: (1) Basis A is the polynomial basis,

{1,a,a_,... ,at}; (2) Basis B is {1,a, a2,a21,az2,a2_}, which is obtained by

combining a basis of GF(2') over GF(22), {1,c_,az}, and a basis of GF(22)

over GF(2), {1,a21}; (3) Basis C is {1,a, aS,aV_,als,al'}, which is obtained

by combining a basis of GF(2') over GF(2_), {1, a}, and a basis of GF(2 _) over

Table 11.1 gives the total numbers of addition-equivalent operations re-

quired by the three specific RMLD algorithms, RMLD-(I,V), RMLD-(G,V)

and RMLD-(G,U), for decoding the above code ;. For the RMLD-(G,U) algo-

rithm, only the values of the upper bound ¢¢m_ _') on the worst-case computa-

tional complexity are given. For comparison pur _ose, the numbers of addition-

equivalent operations required for decoding the above codes with the Viterbi

decoding algorithm based on optimum sectionali2ation presented in Section 10.2

(Lafourcade and Vardy algorithm) are also included. The column labeled 64-

section gives the numbers of operations requir(d in the conventional Viterbi

decoding based on the bit-level 64-section mininlal trellis diagram.

For all EBCH codes, other than the EBCH(6,:, 51) code, the symbol permu-

tations indicated in Table 11.1 give the smallest o3timum values for each column

among the three symbol permutations given al:ove. For EBCH(64,51), Basis

B gives the smallest number of operations requiz ed in the conventional Viterbi

decoding based on the 64-section trellis diagram _unong the three permutations,

but Basis A gives the smallest values for the other columns. This shows that a

good bit ordering for the N-section trellis diagram is not always good for the
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proposed RMLD decoding procedures. The last column in Table 11.1 shows the

numbers of addition-equivalent operations _iven by Lafourcade and Vardy [60].

Table 11.1 shows that the RMLD-(G,U) algorithm is the most effident

trellls-based decoding algorithm even in terms of the worst case computational

complexity, and the difference between the computational complexities of the

RMLD-(I,V) and RMLD-(G,V) algorithms is very small. All three RMLD

aSgorithms are more efficient than the Viterbi decoding algorithm based on

optimum sectionalizatlon [60], except only for the RMLD-(I,V) algorithm for

the EBCH(64, 45) code• For each algorithm, the number of basic operations

executed by the MakeCBT procedure is relatively small compared with that ex-

ecuted by the CombCBT procedure. Consider the EBCH(64, 45) code. Decod-

ing this code with the RMLD-(I,V) algorithm, the number of basic operations

executed by the MakeCBT-I procedure is 108 out of a total of 893,489 basic

operations. Using the RMLD-(G,U) algorithm, the MakeCBT-G procedure

executes 818 basic operations out of a total 665,713 basic operations.

Let < z,y > denote the MakeCBT-G(z,y) operation, and let • denote the

CombCBT-U operation. The optimum trellis sectionalizations for RM3.6 (64, 42)
_IG.U)and EBCH(64,24) with Basis B for the complexity measure Tmi, of the

RMLD-(G,U) algorithm are identical, and represented as

((< 0,8 >- < 8,16 >). (< 16,24 >- < 24,32 >)).

((< 32,40 >. < 40,48 >). (< 48,56 >. < 56,64 >)).

The optimum trellis sectionalization for RM2,d64, 22) for ,_ul is

((((((< 0,8 >. < 8,16 >)-(< 16,24 >. < 24,32 >))

•(< 32,40 > • < 40,48 >)). < 48,56 >). < 56,61 >)

• < 61,63 >). < 63,64 >,

and that for EBCH(64, 30) with Basis C is

(<0,16>.< 16,32>).(<32,48>.<48,64>).

The optimum trellis sectionalization for a code using the algorithm RMLD

is generally not unique. The above optimum trellis sectionalizations are cho-

sen in the following manner: If _br,i,(z,y) -- _b_v_¿(x,y), then execute the
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Table 11.2. Averaie numbers of addition-equivalent operations usin$ the RMLD-(G.U)

algorithm for the RM3,s(64, 42) and EBCH(64, 24) codes.

Upper bound _(_,cr)

on tee worst cue complexity

I:_M =,o (64, 42)

EBCH(64, 24),

Basis B

RMLD-(G,U)
ldB

The average number of 4dB

operations 4, (G'u) 7d----BTm,fl

10dB

Upper bound #(__c_u)

RMLD-(G,U)

on the worst case complexity

ldB

The average number of 4d]3

d/°'u) 7d"--'Boperations _m;=

lOdB

210,671

66,722

66,016

63,572

61,724

171,823

70,676

70,420

69,325

68,158

MakeCBT-G(x,y) procedure. Otherwise, the CombCBT-U(z, y; z) procedure

is executed for an integer z such that Cmin(z,y) ---- Cmh,(X,Z) + ¢,,,iu(z,y) +

42(CU)(Z,y; Z) and tz- (z + y)/21 are the smallest.

Using the trellis sectionalizations which are optimum with respect to the

d_(G.U)measure _(m_; u), we evaluate the average values ,ff Cmi,(0, N), denoted -mi, ,

for the RMLD-(G,U) algorithm which are giver in Table 11.2. It is assumed

that BPSK modulation is used on an AWGN d_annel. The average values at

the SNRs per information bit, 1, 4, 7 and 10 (dB, are listed in the rows labeled

_,(G,u)rain for RM3,, (64, 42) and EBCH(64, 24). We see that these values vary only

_(c,u)
slightly and are much smaller than the worst-ca_e upper bound -,',r,i,, •

i


